Nebraska Water Sustainability Projects
Example projects considered by the Water Funding Task Force

1. North Platte Surface Water Recharge project will be used to retimie flows to the Platte River and to recharge the aquifer.

2. South Platte River augmentation project will retimie high flow on the South Platte River.

3. Oliver Reservoir Rehabilitation allows for increased storage of excess water during high flows.

4. Studies analyzing the cost-benefit of utilizing existing infrastructure for conjunctive management.

5. Canal rehabilitation project uses existing irrigation system infrastructure to recharge the aquifer.

6. J2 Reregulating Reservoir will build new infrastructure to store and retimie flows on the Platte River.

7. Projects needed across the state for safe drinking water.

8. Dam rehabilitation to protect lives and property from flooding.

9. New irrigation efficiencies allow for water savings.

10. Missouri River Levee project will protect Offutt Air Force Base from flooding.

11. New Reservoir on Elkhorn Tributary will retimie flows to benefit Omaha and Lincoln well-fields, while providing flood control.

12. Research is underway to sustainable pumping rates and allow for improved groundwater modeling.

$24 Million
$46 Million
$16 Million
Nebraska Water Sustainability Projects

Example projects considered by the Water Funding Task Force

1. North Platte Surface Water Recharge
 Benefits: The North Platte NRD is working with a local irrigation company on retiming of flows on the North Platte River that allows for aquifer recharge, wildlife benefit and sustainability of local economy.
 Estimated Cost: $800,000–$1 Million
 Partners: North Platte NRD/John Berge

2. South Platte River Recharge/Augmentation Project
 Benefits: Retiming of high flows on the South Platte River allows for aquifer recharge, wildlife benefit and sustainability of local economy.
 Estimated Cost: TBD
 Partners: South Platte NRD/Rod Horn

3. Oliver Reservoir Rehabilitation
 Benefits: Rehab existing structure to allow for more storage for excess water during high flows.
 Estimated Cost: TBD
 Partners: South Platte NRD/Rod Horn

4. Conjunctive Management Feasibility Study
 Benefits: Study analyzing the cost benefits of utilizing existing infrastructure for conjunctive management.
 Estimated Cost: TBD
 Partners: TPNRD and CPNRD/Kent Miller and Lyndon Vogt

5. Central Platte Canal Rehabilitation
 Benefits: Canal rehabilitation project uses existing irrigation system infrastructure to recharge the aquifer.
 Estimated Cost: $16 Million
 Partners: Central Platte NRD/Lyndon Vogt

6. J2 Reregulating Reservoir
 Benefits: Building new infrastructure to store and retime flows on the Platte River that provides protection for endangered species while allowing sustainability for producers.
 Estimated Cost: $75 Million
 Partners: CNPPID/Don Kraus

7. Hastings Water Supply
 Benefits: Work with rural communities like the city of Hastings to mitigate and treat drinking water.
 Estimated Cost: $46 Million
 Partners: Hastings Utilities/Marty Stange

8. Nemaha Dam Rehabilitation
 Benefits: Rehab and improving existing structures to protect lives and property from flooding.
 Estimated Cost: $50,000 to $500,000/structure
 Partners: Nemaha NRD/Bob Hiliske

9. Irrigation Efficiency Cost-Share
 Benefits: Provided tools to producers through Local cost share programs to increase irrigation efficiency and allow for water savings.
 Estimated Cost: $1000/meter
 Partners: Blue Basin NRDs

10. Missouri River Levee to Protect Offutt Air Force Base
 Benefits: Levees would provide flood control and reduce potential property damage and protect lives from flooding.
 Estimated Cost: $24 Million
 Partners: Papio-Missouri NRD, John Winkler

11. New Reservoir on Elkhorn Tributary
 Benefits: Retiming of follows to benefit Omaha and Lincoln wellfields, while providing flood control.
 Estimated Cost: $80 to 100 Million
 Partners: Potential partners Lower Elkhorn/Stan Staab, Papio Missouri River NRD/ Marlin Petermann

12. Groundwater Recharge Monitor Site
 Benefits: Quantify groundwater recharge to determine sustainable pumping rates and allow for improved groundwater model.
 Estimated Cost: $20,000 per station
 Partners: UNL/Dr. John Gates

Lincoln Water Systems
- Lincoln’s current water system and facilities: $413,465,558 (treatment plant, wellfield, reservoir and distribution system) (not replacement value)
- Investments planned for the next 6 years total $75,600,000
 - Breakdown: Misc main replacements – 36%, Distribution main replacement – 24%, Infrastructure rehab – 11.5%, Treatment plant mods – 7.5%, Add reservoir – 6%, The rest – 15%

Papillion Water Systems
- Papillon’s current water system and facilities: $36,000,000 (treatment plant, wellfield, reservoir, towers and distribution system) (Does not include the replacement valve of the system)
- Total investment planned for the next 5 years: $27,500,000
 - Breakdown: another reservoir, additional booster station and up grades to present one, additional transmission mains and plant upgrades
- Papillion will also be assuming the water infrastructure of 27 Sanitary Improvement Districts upon annexation to the city

Fremont Water System
- Fremont’s Water System: current water system and facilities: $50,000,000 (treatment plant, wellfield, reservoir and distribution system)
- Investments planned for the next 6 years: $4,680,000
 - Breakdown: Misc main replacements – 3%, Distribution main replacement – 35%, Infrastructure rehab – 10%, Treatment plant mods – 2%, Add reservoir – 40%, The rest – 10%

Metro Utility District (MUD)
- Water infrastructure replacement
 - 62 year program estimated cost: $958 million
- Florence water treatment plant – 20 year plan: $153 million project
- Plant west – outstanding 18 years left on 20 year bond for $174 million
- Potential treatment of discharge costs due to regulatory changes